Cairo APASL STC 2022

Risk assessment of HCC development based on noninvasive surrogates

George V. Papatheodoridis

Professor in Medicine & Gastroenterology Medical School of National & Kapodistrian University of Athens

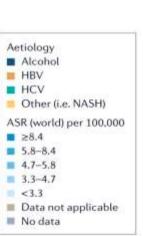
Director of Academic Gastroenterology Department, & Liver Transplantation Unit <u>General Hospital of Athens "Laiko", Greece</u>

George Papatheodoridis – Disclosure information

- <u>Advisor/Consultant</u>: Abbvie, Boehringer Ingelheim, Bristol-Myers Squibb,
 Gilead, GlaxoSmithKline, Janssen, Merck Sharp & Dohme, Novartis, Roche
- <u>Lectures</u>: Abbvie, Bristol-Myers Squibb, Gilead, GlaxoSmithKline, Janssen, Merck Sharp & Dohme, Novartis, Roche
- Grants: Abbvie, Bristol-Myers Squibb, Gilead, Janssen, Roche
- <u>Clinical trials</u>: Abbvie, Astellas, Bayer, Boehringer Ingelheim, Bristol-Myers Squibb, Gilead, Janssen, Merck Sharp & Dohme, Noorik, Novartis, Novo Nordisk, Regulus, Roche, Takeda
- <u>Data Safety Management Board</u>: Gilead

HCC epidemiology & Risk factors

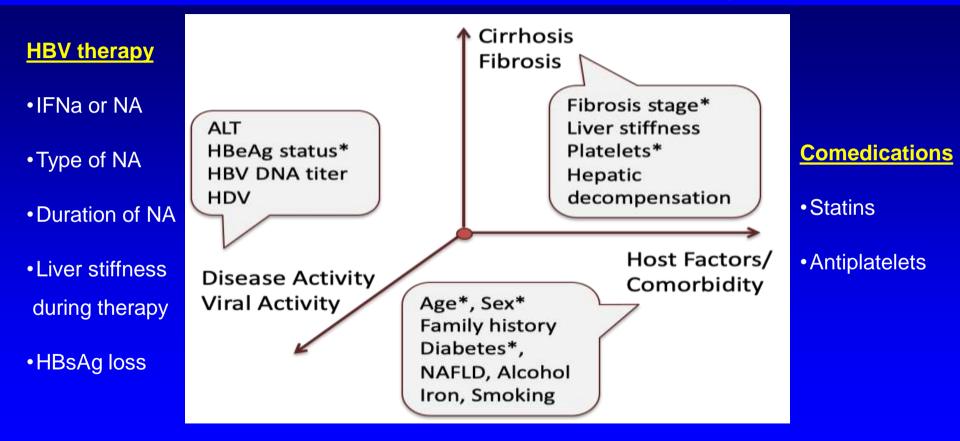
~90% of HCCs are associated with a known underlying cause of liver injury


HBV cirrhosis-CHB The most common

factor worldwide

HCV cirrhosis

In developed countries with Iow HBV endemicity - Rapid decline after DAAs


Other causes NASH: rapidly increasing

Incidence of HCC in Risk Groups

Subgroup	Incidence per Year (%)
All HBV carriers >40 years of age	0.2
HBV cirrhosis	3-8
HCV cirrhosis	3-5
Stage 4 primary biliary cirrhosis	3-5
Alcoholic cirrhosis	?
Genetic hemochromatosis	?
Nonalcoholic steatohepatitis / Cirrhosis	?

Beasley RP et al. Lancet 1981;2:1129-33. Degos F et al. Gut 2000;47:131-6. Caballeria L, et al. Am J Gastroenterol 2001;96:1160-3. Fattovich G. J Hepatol 2003;39 (Suppl 1):S50-8. Manno M et al. Gastroenterology 2004;127:756-63.

Risk factors for HCC in chronic HBV patients

Papatheodoridis GV, Voulgaris T, Papatheodoridi M, Kim WR. Hepatology 2020;72:2197-205.

When HCC surveillance is not recommended

- Recommendations are based on decision analyses,
- cost-effectiveness models & expert opinions
- HCC surveillance is not recommended in
- > Child C cirrhosis, except for patients on transplant list
- Cirrhotics with an annual HCC risk of <1.5%</p>
- > Non-cirrhotics with an annual HCC risk of <0.2%

No age limit

EASL-EORTC CPGs. J Hepatol 2018;69:182-236.

Risk assessment of HCC development based on noninvasive surrogates

> Non-invasive biomarkers of liver fibrosis severity

> HCC risk scores

Emerging approaches

Recent non-invasive biomarkers of HCC

Prognostic models of HCC

Liver elastography

Transient (Fibroscan®)

Shearwave

COMBINED EPIDEMIO-SEROLOGICAL MARKERS OF FIBROSIS

- **Fibrotest**[®] (α_2 -macroglobulin, GGT, apolipoprotein A₁, haptoglobin, bilirubin, age, sex)
- Forns index (age, PLT, cholesterol, GGT)
- APRI (AST, PLT)
- Lok's index (PLT, AST/ALT, INR)
- **FibroSpect**[®] (α₂-macroglobulin, hyaluronic acid, TIMP-1)
- Enhanced liver fibrosis score (age, alcohol use, cholesterol, HOMA-IR)
- GUCI (Goteborg University Cirrhosis Index) (AST, INR, PLT)
- Hepascore[®] (bilirubin, GGT, hyaluronic acid, α₂-macroglobulin, age, sex)
- Fibrometers[®] (PLT, PT, AST, α₂- macroglobulin, hyaluronic acid, urea, age)

COMBINED EPIDEMIO-SEROLOGICAL MARKERS OF FIBROSIS

- Fibroindex (PLT, AST, gamma-globulin)
- Virahep-C model (AST, PLT, alkaline phosphatase, age)
- Zeng model (age, α₂- macroglobulin, hyaluronic acid, GGT)
- Hui index (BMI, bilirubin, PLT, albumin)
- **SHASTA index (hyaluronic acid, AST, albumin)**
- FIB-4 score (age, AST, ALT, PLT)
- NAFLD fibrosis score (age, hyperglycemia, BMI, PLT, albumin, AST/ALT)
- European Liver Fibrosis (ELF) test (age, TIMP-1, hyaluronic acid, P3NP)
- BARD score (BMI, AST/ALT, type 2 diabetes)

Non-invasive biomarkers of liver fibrosis severity

- Mainly studied for the assessment of liver fibrosis severity and not of HCC risk
- Mostly reliable for diagnosis of cirrhosis, which is strongly associated with the HCC risk
- Some markers (especially liver stiffness by elastography) are included in some HCC risk scores

Risk assessment of HCC development based on noninvasive surrogates

> Non-invasive biomarkers of liver fibrosis severity

HCC risk scores

Emerging approaches

Recent non-invasive biomarkers of HCC

Prognostic models of HCC

HCC risk scores

 \rightarrow

- Try to differentiate patients according to their HCC risk,
- but mainly aim to differentiate patients
- > with at least a minimum HCC risk: surveillance
- > with no or negligible HCC risk: no surveillance

Derivation cohort

Independent HCC risk factors Weighted risk factors = Score Discrimination, Calibration, Validation

Validation

cohort

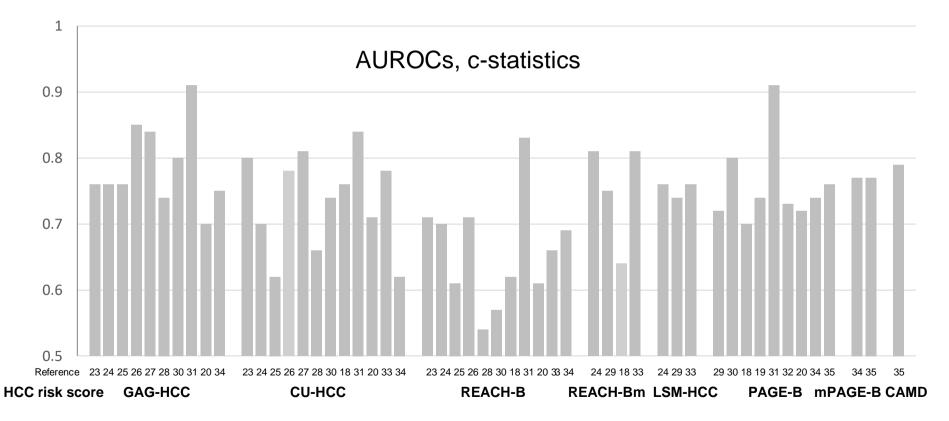
Key characteristics of HCC risk scores

- 1. Negative predictive value (NPV) of low-risk cut-off¹
- 2. Simplicity, easy to use in clinical practice
- 3. AUROC
- 4. Proportion of patients in low risk group

¹<u>HCC surveillance cost-effective</u>: if annual HCC incidence ≥0.2% in non-cirrhotics & ≥1.5% in cirrhotics EASL HCC CPGs, 2012/2018

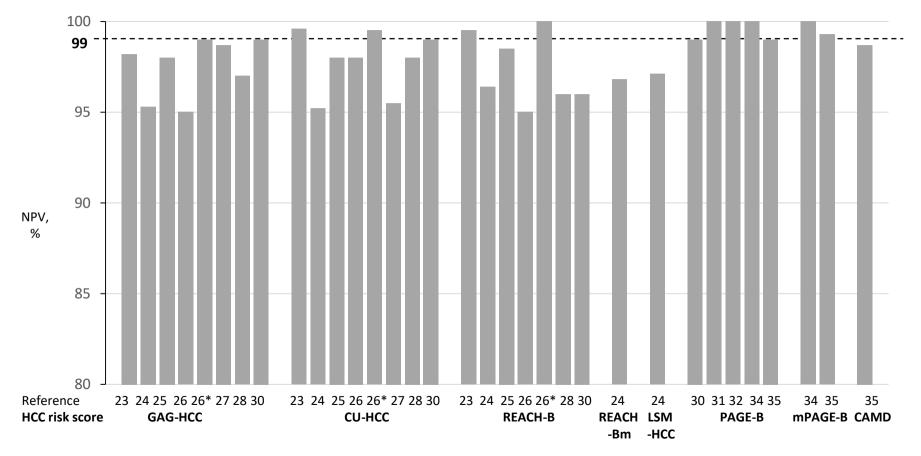
Main HCC risk scores developed in cohorts of untreated CHB patients

Risk score	Country/Area	1 st author	Year	Score parameters
GAG-HCC	Hong Kong	Yuen	2009	Age, Sex, HBV DNA, Cirrhosis
CU-HCC	Hong Kong	Wong VW	2010	Age, Alb, Bil, HBV DNA, Cirrhosis
REACH-B	Taiwan /Hong Kong Korea	Yang	2011	Age, Sex, ALT, HBeAg, HBV DNA
REACH-B II	Taiwan	Lee	2013	Age, Sex, ALT, HBeAg, HBV DNA, qHBsAg, genotype, family history
LS Model	Korea	Kim	2013	Age, Sex, HBV DNA, LSM
LSM-HCC	Hong Kong	Wong GL	2014	Age, Albumin, HBV DNA, LSM
LSPS	Korea	Shin	2015	PLT, LSM, Spleen size
RWS-HCC	Singapore	Poh	2016	Age, Sex, Cirrhosis, aFP
AGED	China	Fan	2019	Age, Sex, HBeAg, HBV DNA


Voulgaris T, Papatheodoridi M, Lampertico P, Papatheodoridis GV. Liver Int 2020;40:484-495.

HCC risk scores developed in cohorts of NA treated CHB patients

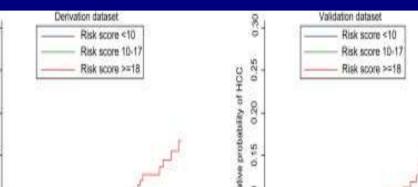
Risk score	Country/Area	1 st author	Year	Score parameters
REACH-Bm	S Korea	Lee	2014	Age, Sex, LSM , ALT, HBeAg
PAGE-B	Europe	Papatheodoridis	2016	Age, Sex, Platelets
HCC-RESCUE	S Korea	Sohn	2017	Age, Sex, Cirrhosis
APA-B	Taiwan	Chen	2017	Age, Platelets, aFP
CAMD	Taiwan/Hong-Kong	Hsu	2018	Age, Sex, Cirrhosis, Diabetes
mPAGE-B	S Korea	Kim	2018	Age, Sex, Platelets, Albumin
AASL	S Korea	Yu	2019	Age, Sex, Cirrhosis, Albumin


Voulgaris T, Papatheodoridi M, Lampertico P, Papatheodoridis GV. Liver Int 2020;40:484-495.

HCC prediction by several risk scores

Papatheodoridis GV, Voulgaris T, Papatheodoridi M, Kim WR. Hepatology 2020;72:2197-205.

Negative predictive values (NPV) for low-risk groups of several HCC risk scores


Papatheodoridis GV, Voulgaris T, Papatheodoridi M, Kim WR. Hepatology 2020;72:2197-205.

PAGE-B: a simple to use HCC risk score for the first 5 years of ETV/TDF in Caucasian CHB patients

Recommended for Caucasian CHB patients by EASL HBV & HCC Guidelines

Construction of the PAGE-B risk score for HCC

Age (years)	Gender	Platelets (/mm ³)
16–29: 0	Female: 0	≥200,000: 0
30–39: 2	Male: 6	100,000– 199,999: 6

⁴⁰⁻⁴ Independently validated in ≥10 Asian cohorts (>60,000 pts) 50-4 & in ≥5 Caucasian/mixed cohorts (>5000 pts)

0.00.0		00		
60–69: 8	0 1 2 3 4 5	0 1 2 3 4 5		
≥70: 10	Years since entecavir/tendovir initiation	Years since entecavir/tenofovir initiation		
270.10	HOC: hepatocetul	lar carcinoma		

Males ≥40 yrs, females ≥70 yrs, PLT <200,000/100,00 /mm³ & age ≥40/30 yrs or males: moderate to high HCC risk

Papatheodoridis GV et al. J Hepatol 2016;64:800-6

Models of HCC risk in HCV patients

- >45,810 HCV patients treated with IFNa and/or DAAs based regimens HCC risk models
- No cirrhosis, no SVR/SVR: sex, age, BMI
- Cirrhosis, no SVR: age, BMI, race/ethnicity; Cirrhosis, SVR: age, race/ethnicity GN loannou et al. J Hepatol 2018;69:1088-98.

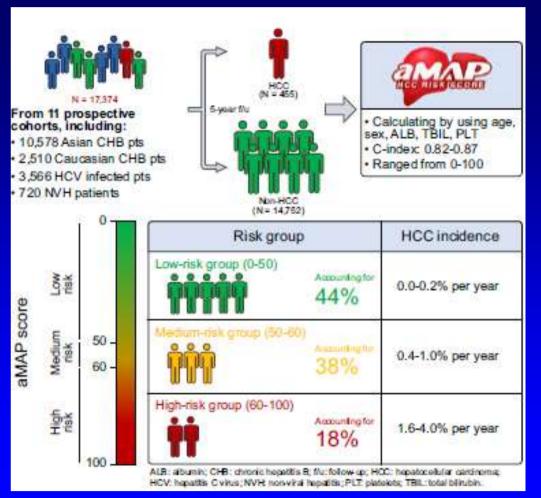
> 993 HCV patients with advanced fibrosis and SVR after DAAs

TE-based HCC risk model - score 0*: 0% HCC occurrence at 3 years
 *baseline LSM ≤17.3 kPa, albumin >4.2 g/dL and 1-yr DeltaLSM >25.5%

 FIB-4 based HCC risk model – score 0[#]: 0.4% HCC occurrence at 3 years [#]baseline FIB-4 ≤3.7, albumin >4.2 g/dL and 1-yr FIB-4 ≤3.3 and 1-yr GGT ≤42 IU/L S Alonso López et al. Hepatology 2020;72:1924-34.

> 836 patients with HCV cirrhosis

Machine learning algorithms - non-SVR: PLT, GGT, AFP, albumin; SVR: PT, ALT, age, PLT


E Audureau et al. J Hepatol 2020;73:1434-45.

17,374 pts Cirrhosis: 30% Asians: 71%, Caucasians: 29%

HBV: 75.3% HCV: 20.5% Non-VH: 4.1%

AUROCs: 0.82-0.87

<u>Cut-off: 50</u> NPV: 99.5% for 5-year HCC risk prediction

R Fan, G Papatheodoridis, J Sun et al. J Hepatol 2020;73:1368-78.

HCC risk prediction in patients with cirrhosis

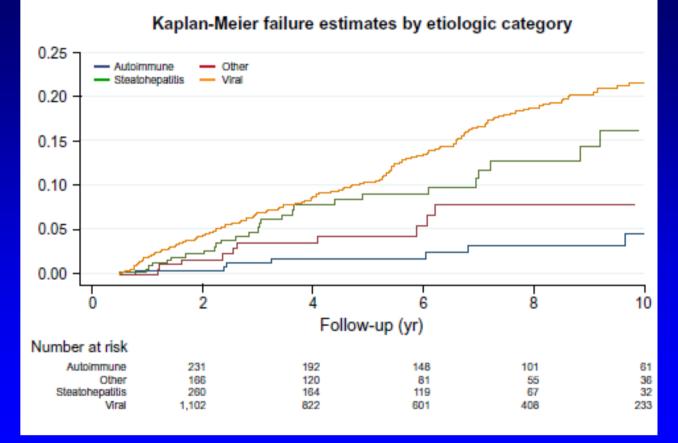
TABLE 3. Calculation of 1-Year HCC Risk Using the ADRESS-HCC Model

34,932 pts (HCV: 46% NASH/Crypto: 18% Alcohol: 18% PBC: 5% PSC: 6%

AUROC: 0.69-0.70 for 1-year HCC prediction Step 1: calculate ADRESS-HCC score = ([age] + [diabetes] + [race] + [etiology] + [sex] + [severity]) in which: Age indicates the age in years × 0.0532 Diabetes indicates 0.2135 if present and 0 if absent Race indicates 0.2058 if nonwhite or Hispanic or 0 if non-Hispanic white Etiology indicates 0 if autoimmune, 0.3509 if alcohol/metabolic, and 1.246 if viral Sex indicates 0.5114 if male and 0 if female Severity indicates a CTP score (5-15) × 0.1170 Step 2: baseline hazard at 1 year: S0(t) = 0.99986 Step 3: [100*(1-S0(t)*exp^{(ADRESS-HCC Score})] = 1-year HCC risk (%)

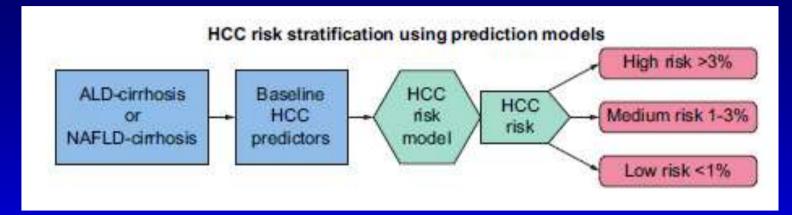
Abbreviations: ADRESS, age, diabetes, race, etiology of cirrhosis, sex, and severity; CTP, Child-Turcotte-Pugh; HCC, hepatocellular carcinoma.

JA Flemming et al. Cancer 2014;120:3485-93.


Toronto HCC risk index for 10-year prediction in cirrhotics

THRI:

age, sex, etiology, platelets


2,079 pts (HCV: 42%, HBV: 19%, Alcohol: 11% NASH: 5% PBC: 5%)

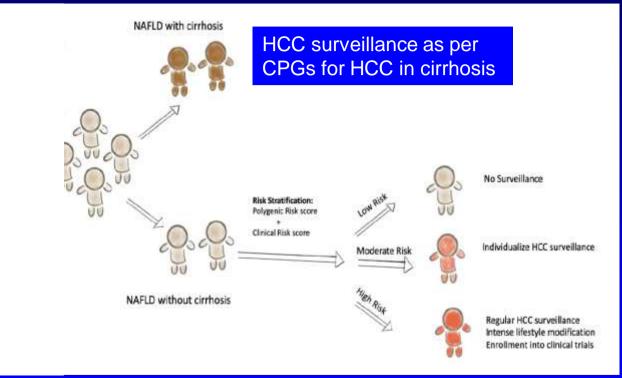
AUROC: 0.76-0.77

SA Sharma et al. J Hepatol 2018;68:92-9.

Models of HCC risk in ALD/NAFLD cirrhotics

23,243 pts – ALD: 16,175, NAFLD: 7,068 White, non-Hispanic: 73%, Black, non-Hispanic: 10% Hispanic: 8%

HCC risk model: age, sex, BMI, diabetes, PLT, albumin, AST/√ALT AUROCs: 0.72-0.74


GN loannou et al. J Hepatol 2019;71:523-33.

Other HCC risk scores in NAFLD/ALD cirrhosis

Model	Country	Study Design	Output	Variables	Major Etiology	Predictive ability	Validation
Grimaudo S	Italy	prospective	aHR	PNPLA3	NAFLD		No
et al(96)		longitudinal	PNPLA3 G variant	rs738409, F3-			
			:2.68; P=.04	F4 fibrosis,			
			F3-F4 fibrosis (Inf	Liver function,			
0			P < .001)	portal			
				hypertension			
APAC	Germany	Observational		Age,	NAFLD, viral,	AUROC 0.95 (95%,	Internal
Score(97)		cohort study		sPDGFRβ,	alcohol	CI: 0.91-0.99)	
				AFP, and		SN:84.62%, SP:	
				Creatinine		90.91% for HCC in	
						NAFLD-cirrhosis	

Shah PA et al. Hepatology 2022 Apr 28. doi: 10.1002/hep.32542.

HCC risk scores for patients with NAFLD without cirrhosis

- Cost-effective HCC surveillance in noncirrhotic NAFLD: individualization
- Non-cirrhotic NAFLD: No HCC surveillance if HCC risk 0.1-0.8 per 1,000 patient-years

HCC risk score (age, sex, diabetes, smoking, cholesterol, ALT) for NAFLD without cirrhosis (No HBV/HCV/Alcohol): AUROC 0.83-0.92 n=467,206/91,357: derivation/validation cohort). Sinn DH et al. Int J Epidemiol 2020;49:1562-71. Risk assessment of HCC development based on noninvasive surrogates

> Non-invasive biomarkers of liver fibrosis severity

> HCC risk scores

Emerging approaches

Recent non-invasive biomarkers of HCC

Prognostic models of HCC

Recent non-invasive biomarkers of early HCC diagnosis

Biomarker	Phase of development	Early detection performance	AUC ROC for early detection
AFP (20-25)	5	Sensitivity: 39%-64% Specificity: 76%-97%	0.75-0.82
Lens culinaris agglutinin-reactive AFP (AFP-L3; refs. 20, 33)	2/3	Sensitivity: 49%-62% Specificity: 90%	0.66-0.76
DCP (20, 33)	2/3	Sensitivity: 34%-40% Specificity: 81%-98%	0.72
Osteopontin (38, 40, 41)	2	Sensitivity: 49% Specificity: 72%	0.73
MDK (44)	2/3	Sensitivity: 87% Specificity: 90%	0.923
DKK1 (45, 46)	2	Sensitivity: 41%-74% Specificity: 87%	0.61-0.88
GPC-3 (50-52)	2	Sensitivity: 55% Specificity: >95%	0.793
AFU (53)	2	Sensitivity: 56% Specificity: 69%	0.506
GP-73 (58, 59)	2	Sensitivity: 62%-79% Specificity: 62%-88%	Not available
SCCA (60-63)	2	Data for early-stage HCC not available	Data for early-stage HCC not available

Parikh ND et al. Cancer Epidemiol Biomarkers Prev 2020; 29:2495-503

Might be useful for individual HCC-risk based screening in the future www.calpractice.yet www.calpractice.yet is a practice yet solic related HCC Not for clu, MBOAT7 genes) vkers (cytokines

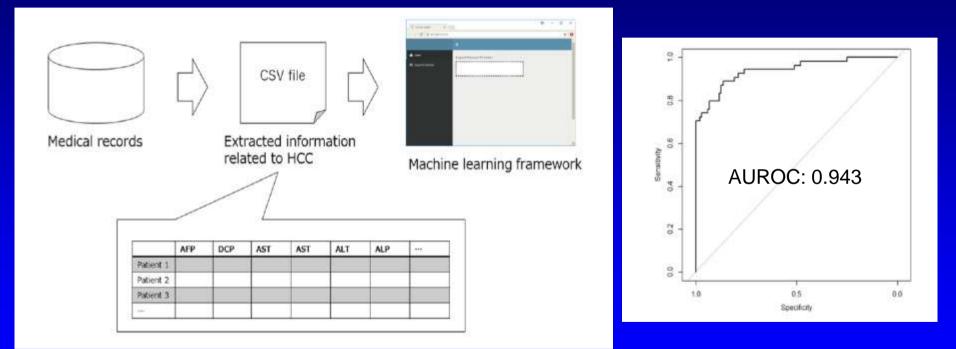
nomarkers (cytokines, cfDNA species etc)

Prognostic models of early HCC diagnosis

Table 3. Algorithms that have been evaluated for the detection of HCC.

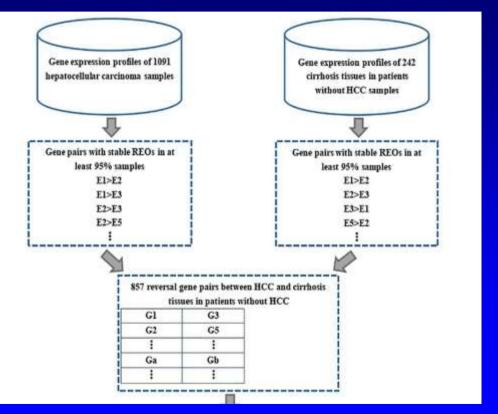
Algorithms	Components	Phase of development	Early detection performance	AUC ROC for early detection
GALAD score (113)	Gender, age, AFP, AFP-L3, and DCP	2	Sensitivity: 68% Specificity: 95%	0.85-0.95
Doylestown + fucosylated kininogen (92)	Fucosylated kininogen, log AFP, age, gender, alkaline phosphatase, and ALT	2	7	0.97
HES algorithm (28)	Age, AFP, rate of AFP change, ALT, and platelet count	2/3	Data for early-stage HCC not available	Data for early-stage HCC not available
Methylated DNA panel (110)	4 methylated DNA markers, AFP, and AFP-L3	2	Sensitivity: 71% Specificity: 90%	0.91

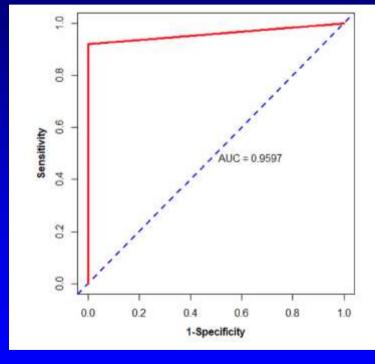
Parikh ND et al. Cancer Epidemiol Biomarkers Prev 2020; 29:2495-503


GAAD SCORE (age, gender, aFP, PIVKA-II) vs GALAD score: better detection of early stage HCC. HLA Chan et al. J Hepatol 2022;77:S937.

Prognostic models for HCC in NAFLD without cirrhosis

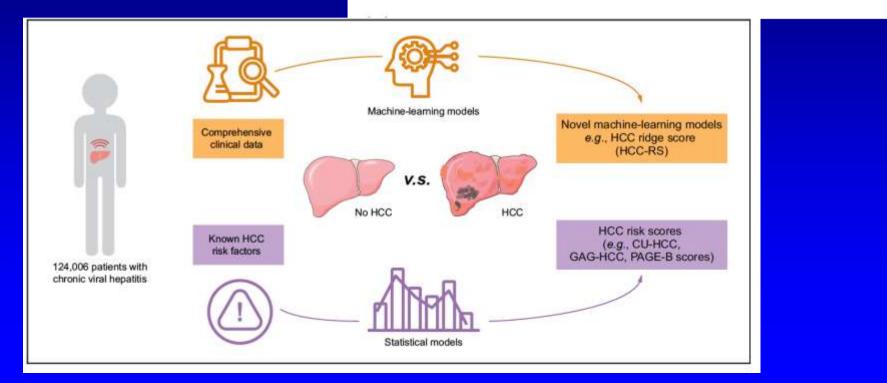
Model	Study Design	Variables	Populatio	Country	Predictive ability (AUROC,	Validatio
			n		HR)	n
Gellert-	Prospective	PRS:	General	UK	HR 29 (95% CI, 17, 51),	No
Kristenson et		PNPLA3+TM6SF2+HSD17B13	population	Denmark	p<0.001	
al (105)						
Pelusi et	Retrospective	PRS:	NAFLD	Italy	$0.9\pm0.04~(93\%~{\rm SN},86\%~{\rm SP})$	Yes
al. (101)	Cohort	PNPLA3+TM6SF2+MBOAT7+Varia	with NCL	UK		
		nts		Non-		
		Clinical: Age, gender, obesity,		Finnish		
		T2DM, severe fibrosis		Europeans		
Donati et	Retrospective	PRS: PNPLA3, TM6SF2and	NAFLD	Italy	0.96 ± 0.04 (96% SN, 89%	No
al (100)	Cohort	MBOAT7	with NCL		SP)	
		Clinical: Age, gender, obesity,				
		T2DM, severe fibrosis				


Shah PA et al. Hepatology 2022 Apr 28. doi: 10.1002/hep.32542.


New approaches for HCC diagnosis: Prognostic models of biomarkers using Al-Machine learning

Sato M. et al. Sci Rep 2019; 9:7704

New approaches for HCC diagnosis: Prognostic models of gene pairs using Al-Machine learning



Zhang et al. Front Bioeng Biotechnol 2021;8:254.

Machine Learning Algorithms Outperform Conventional Regression Models in Predicting Development of Hepatocellular Carcinoma

Amit G. Singal, MD MS^{1,2,3}, Ashin Mukherjee, MS⁴, B. Joseph Elmu Higgins, MD PhD⁵, Anna S. Lok⁵, Ji Zhu, PhD⁴, Jorge A Marrero, MI Waljee, MD MS^{5,6} Novel machine learning models outperform risk scores in predicting hepatocellular carcinoma in patients with chronic viral hepatitis

Risk assessment of HCC development based on noninvasive surrogates - Conclusions

- HCC risk: mainly depends on the severity and cause of liver disease
- Epidemiological factors are important (age>gender)
- CHB: mostly studied HCC risk scores can be useful depending on the CHB setting - PAGE-B: one of the simplest and the most well validated HCC risk score; the only score included in CPGs
- Efforts including risk scores for specific risk assessment in other settings (eg HCV after SVR, ALD/NAFLD); not in clinical practice yet

Risk assessment of HCC development based on noninvasive surrogates - Conclusions

 Many new HCC risk scores and biomarkers based on clinical/laboratory parameters, genes and/or new biomarkers: under evaluation

• Artificial intelligence - machine learning: new potential for individualized more accurate HCC risk assessment in the future

